
Modern

LATEX
Second edition

Matt Kline

Copyright © 2018–2022
by Matt Kline

This book is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
In short, you are free to share, translate, adapt, or improve this book so long as you
give proper credit and provide your contributions under the same license.
The license’s full text is available at
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Print copies of this book are available at cost on TheBookPatch and Amazon.

The author apologizes for any typos, formatting mistakes, inaccuracies, and other
flubs. He welcomes fixes and improvements in this book’s Git repository at
https://github.com/mrkline/latex-book

Questions, comments, concerns, and diatribes can also be emailed to
matt <at> bitbashing.io

The author does not have a checking account with the Bank of San Serriffe, but he
will happily buy you a drink when we meet as thanks for your help.

Second edition (online pdf), typeset October 25, 2022.

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://app.thebookpatch.com/BookStore/modern-latex/37e37107-c04d-4278-9d1b-32979616dc85
https://www.amazon.com/Modern-LaTeX-Matt-Kline/dp/B0B7PZB2YB
https://github.com/mrkline/latex-book

ToMax, who once told me about a cool program he used to type up his college papers.

Contents
1. Typography and You . 1

What is LATEX? . 2
Another guide? . 3

2. Installation . 5
Editors . 6
Online options . 6

3. Hello, LATEX! . 7
Spacing . 8
Commands . 9
Special characters and line breaks 10
Environments . 11
Groups and scopes . 12

4. Document Structure . 13
Preambles and packages . 13
Hierarchy . 14
On your own . 15

5. Formatting Text . 17
Emphasis . 17
Meeting the whole (type) family 17
Sizes . 18
On your own . 20

6. Punctuation . 21
Quotation marks . 21
Hyphens and dashes . 22
Ellipses . 22

i

Spacing . 23
On your own . 23

7. Layout . 25
Justification and alignment . 25
Lists . 26
Columns . 28
Page breaks . 28
Footnotes . 29
On your own . 29

8. Mathematics . 30
Examples . 30
On your own . 32

9. Fonts . 33
Changing fonts . 33
Selecting font files . 34
Scaling . 36
OpenType features . 36

Ligatures . 36
Figures . 37

On your own . 38

10. Microtypography . 39
Character protrusion . 39
Font expansion . 40
On your own . 40

11. Typographie Internationale . 41
Unicode . 41
Polyglossia . 42
On your own . 43

12. When Good Type Goes Bad . 44
Fixing overflow . 44
Avoiding widows and orphans . 44

ii

Handling syntax errors . 45

A. A Brief History of LATEX . 46

B. Additional Resources . 48
For LATEX . 48
For typography . 48

Notes . 49

Colophon . 51

iii

1. Typography and You

Life is a parade of written language. Ads, apps, articles, emails, essays, menus,
messages, and more constantly shove text in your face. And when you read that
text, you see so much more than the author’s verbiage. Consciously or not, you
notice the shapes and sizes of letters. You notice how those letters are arranged into
words, how those words are arranged into paragraphs, how those paragraphs are
arranged onto pages and screens. You notice typography.

Typography is why these two lines remind you of awful essays

you wrote in school. Do many books look this way? Why not?

There is a reason street signs don’t look like this:

EGorhamSt.
And why a very important switch in a spaceship is labeled like this:

CM/SM SEP

Not like this:

CM/SM Sep

Effective writing isn’t just about the words you choose, it’s also about their look
and layout. Good typography isn’t just art—it’s a tool to help people understand
you better, faster. And if you want to leverage that tool, you should try LATEX!

1

What is LATEX?
LATEX (pronounced “lay-tech” or “lah-tech”) is an alternative to word processors
like Microsoft Word, Apple Pages, Google Docs, and LibreOffice. These other
applications follow the principle ofWhat You See Is What You Get (wysiwyg),
where what is on screen is the same as what comes out of your printer. LATEX is
different. Here, documents are written as “plain” text files, usingmarkup to specify
how the final result should look. If you’ve done any web design, this is a similar
process—just as html and css describe the page you want browsers to draw,
markup describes the appearance of your document to LATEX.

\LaTeX{} (pronounced ``lay-tech'' or ``lah-tech'') is an

alternative to word processors like Microsoft Word,

Apple Pages, Google Docs, and LibreOffice.

These other applications follow the principle of

\introduce{What You See Is What You Get}

\acronym{(wysiwyg)}, where what is on screen is the same

as what comes out of your printer.

\LaTeX{} is different. Here, documents are written as

``plain'' text files, using \introduce{markup}

to specify how the final result should look.

If you've done any web design, this is a similar

process---just as \acronym{html} and \acronym{css}

describe the page you want browsers to draw,

markup describes the appearance of your document to \LaTeX.

The LATEX markup for the paragraph above

Thismight seem strange if you haven’t workedwithmarkup before, but it comes
with a few advantages:

1. You can handle your writing’s content and its presentation separately. At
the start of each document, you describe the design you want. LATEX takes it
from there, consistently formatting your whole text just the way you asked.
Compare this to a wysiwyg system, where you constantly deal with ap-
pearances as you write. If you changed the look of a caption, were you sure
to find all the other captions and do the same? If the program arranges
something in a way you don’t like, is it hard to fix?

2

2. You can define your own commands, then tweak them to instantly adjust
every place they’re used. For example, the \introduce and \acronym com-
mands in the example above aremyown creations. One italicizes text, and the
other sets words in small caps with a bit of extra l ett er s pac ing
so the characters don’t look toocrowded. If I decide that I’d prefer new
terms to have this look, or that acronyms should be formatted LIKE THIS,
I just change the two lines that define those commands, and every instance
in this book immediately takes on the new look.

3. Being able to save the document as plain text has its own benefits:

• You can edit it with any basic text editor.

• Structure is immediately visible and simple to replicate.*

• You can automate content creation using scripts and programs.

• You can track your changes with version control software,
like Git or Mercurial.

Another guide?
You might wonder why the world needs another guide for LATEX. After all, it has
been around for decades. A quick search finds nearly a dozen books on the topic.
There are plenty of resources online.

Unfortunately, most LATEX guides have two fatal flaws: they are long, and they
are old. Beginners don’t want—or need—hundreds of pages just to learn the basics,
and older guides waste your time with outdated information. When LATEX was first
released in 1986, none of the publishing technologies we use today existed. Adobe
wouldn’t debut their Portable Document Format for seven more years, and desktop
publishing was a fledgling curiosity. This shows—badly—in many LATEX guides. If
you look for instructions to change your document’s font, you get swamped with
bespoke nonsense.†

*Compare this to wysiwyg systems, where it’s not always obvious how certain formatting
was produced or how to match it.

†Take these criticisms with a grain of salt. The fact that LATEX is still here after all of the
technology around it became obsolete—multiple times—is a testament to its staying power.

3

The good news is that LATEX has improved by leaps and bounds in recent years.
It’s time for a guide that doesn’t weigh you down with decades of legacy or try (in
vain) to be a comprehensive reference. After all, you’re a smart, resourceful person
who knows how to use a search engine. This book will:

1. Teach you the fundamentals of LATEX.

2. Point you to places where you can learn more.

3. Show you how to take advantage of modern typesetting technologies.*

4. End promptly thereafter.

Let’s begin.

*By modern, I mean “from the mid-1990s”, but most web browsers and desktop publishing
software are only just starting to catch up.

4

2. Installation
When you install LATEX on your computer, it comes packaged as a distribution that
contains:

1. LATEX, the program—the thing that turns markup into typeset documents.*

2. A common set of LATEX packages. Packages are bundles of code that do all
sorts of things, like provide new commands or change a document’s style.
We’ll see lots of them in action throughout this book.

3. Editors and other helpful tools.

Each major operating system has its own LATEX distribution:

MacOS has MacTEX. Grab it from http://www.tug.org/mactex and install it
using the instructions there.

Windows hasMikTEX. Install it fromhttps://miktex.org/download. MikTEX
has the helpful ability to automatically download additional packages as your
documents use them for the first time.

Linux and BSD use TEX Live. Like most software, it is provided through your
os’s package manager. Linux distributions usually offer a texlive-full or
texlive-most package that installs everything you need.†

*Well, actually, multiple LATEX programs, but we’re getting to that.
†If you would prefer a smaller install, Linux distributions usually break TEX Live into
multiple packages. Look for ones with names like texlive-core, texlive-luatex and
texlive-xetex. As you use LATEX more, you may need less-common packages, which
usually have names like texlive-latexextra, texlive-science, and so on. Of course, all
of this may vary from one Linux distribution to another.

5

http://www.tug.org/mactex
https://miktex.org/download

Editors
Since LATEX source files are regular text files, you write them with the usual choices:
Vim, Emacs, VS Code, and so on.* There are also editors designed specifically for
LATEX, which often come with a built-in pdf viewer. (You can find a good list on
the LATEX Wikibook, in its installation chapter. See Appendix B.)

Online options
If you don’t want to install LATEX on your computer, try online editors like
ShareLATEX or Overleaf. This book doesn’t focus on these web-based tools, but
the same basics apply. Of course, you have less control over certain aspects, like
available fonts, the version of LATEX used, and so on.

*If you’ve never used any of these, try a few. They’re popular with programmers and other
folks who shuffle text around screens all day. Just don’t use Notepad. Life is too short.

6

3. Hello, LATEX!
Now that you have LATEX installed, let’s try it out. Open up your favorite text editor
and save the following as hello.tex:

\documentclass{article}

% Say hello

\begin{document}

Hello, World!

\end{document}

Next, we run this file through LATEX (the program)* to get our document. The
installation placed several different versions—or engines—on your machine, but
throughout this book, we use the newest ones: LuaLATEX and X ELATEX.†

If you are using a LATEX-specific editor, it should have some menu to select
the engine you would like to use, along with a button to generate your document.
Otherwise, run the following from your terminal:‡

$ xelatex hello.tex

Feel free to try lualatex instead—there are a few differences between the two
that we will discuss later, but either is fine for now. With luck, you should see some
output that ends in a message like:

Output written on hello.pdf (1 page).

Transcript written on hello.log.

*Not to be confused with LATEX the lunchbox, LATEX the breakfast cereal, or LATEX the
flamethrower. The kids love this stuff!

†See Appendix A for a comparison of the various LATEX engines.
‡How to work a terminal, make sure the newly-installed LATEX programs are in your PATH,
and so on are all outside the scope of this book. As is tradition, the leading dollar sign in
this example just denotes a console prompt, and shouldn’t actually be typed.

7

And in your current directory, you should find a newly minted hello.pdf. Open
it up and you should see a page with this at the top:

Hello, World!

Congrats, you created your first document! Let’s unpack what we just did.
All LATEX documents begin with a \documentclass command, which picks a

base “style” to use. Many classes are available—and you can even create your own—
but common ones include article, report, book, and beamer.* For the average
document, article is probably a good choice. The next line, % Say hello,
is a comment. LATEX ignores the rest of a line once it sees a percent sign, so
we use it to leave notes for anybody reading the document’s source.† Finally,
\begin{document} tells LATEX that what follows is the actual document content,
and \end{document} states that we are finished.

Let’s cover some more basics.

Spacing
LATEX generally handles inter-word spacing for you, regardless of how many times
you mash the space bar or tab key. For example, typing the following into your
editor

The number of spaces between words doesn't matter.

The same is true for space between sentences.

An empty line ends the previous paragraph and

starts the next.

yields

The number of spaces between words doesn’t matter. The same
is true for space between sentences.

An empty line ends the previous paragraph and starts the next.

*This last one is for slideshows, named after a German term for a projector.
†Including, perhaps most importantly, a confused version of your future self!

8

Notice howLATEXautomatically follows typographic conventions, such as indenting
new paragraphs and leaving a little more space between sentences than the space
between words. One quirk to be aware of is that comments “eat” any leading space
on the following line, so

This% weird, right?

is strange.

gives

Thisis strange.

Commands
LATEX provides many commands to format your text, and you can also define
your own! Commands always begin with a backslash (\), contain only letters,
and are case-sensitive.* Some commands need more information, or arguments:
\documentclass, for example, needs to knowwhich class we want. Arguments are
enclosed in consecutive pairs of braces, so if some command needed two arguments,
we would type:

\somecommand{argument1}{argument2}

Many commands also take optional arguments. They precede the mandatory
ones, are enclosed in square brackets, and are separated by commas. Say you want
to print your document as double-sided pages† in 11 point type. We make these
demands as optional \documentclass arguments:

\documentclass[11pt, twoside]{article}

*\foo is different from \Foo, for example.
†twoside introduces commands that only make sense for double-sided printing, like one
that skips to the start of the next odd page. It also lets you have different margins for even
and odd pages, which is useful for texts like this book.

9

Other commands take no arguments at all—\LaTeX, which prints the LATEX
logo, is one example. These commands consume any space that follows them. For
example,

\LaTeX is great, but it can be a bit odd sometimes.

will give you

LATEXis great, but it can be a bit odd sometimes.

You can fix this with an empty pair of braces following the command. Of course,
you don’t need braces if there is no space to preserve:

Let's learn \LaTeX! \LaTeX{} is a powerful tool,

but a few of its rules are a little weird.

gets us

Let’s learn LATEX! LATEX is a powerful tool, but a few of its rules
are a little weird.

Special characters and line breaks
Some characters have special meanings in LATEX. We just saw, for example, that %
starts a comment and \ starts a command. The full list of special characters is:

$ % ^ & _ { } ~ \

Each has a corresponding command for actually printing it in your document.
Respectively, they are:

\# \$ \% \^{} \& _ \{ \} \~{} \textbackslash

10

Regardless of whatever follows them, the caret (^) and tilde (~) always need braces.
This is a relic from days when they produced diacritical marks: once upon a time,
LATEX users would typeset “jalapeño” with jalape\~no. Today we just type ñ into
our source file.*

If you’re wondering why we print \ with \textbackslash instead of \\ , it is
because the latter is the command to force a line break.

Give me \\

a brand new line!

obeys:

Give me
a brand new line!

Use this power sparingly—deciding how to elegantly break paragraphs into lines is
one of LATEX’s greatest skills.

Environments
We often format text in LATEX by placing it in environments. These always start with
\begin{name} and conclude with \end{name}, where name is that of the desired
environment. Take the quote environment, which adds additional space on both
sides of a block quotation:

Donald Knuth once wrote,

\begin{quote}

We should forget about small efficiencies,

say about 97\% of the time:

premature optimization is the root of all evil.

Yet we should not pass up our opportunities in

that critical 3\%.

\end{quote}

*Of course, this depends on your keyboard, your editor, and your language settings in your
os. We will talk more about languages and Unicode fun in chapter 11.

11

produces

Donald Knuth once wrote,
We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all
evil. Yet we should not pass up our opportunities in
that critical 3%.

Groups and scopes
Some commands change how LATEX sets the text that follows them. \itshape, for
example, italicizes everything that comes after it. To limit a command’s influence
to a certain area, surround it with braces.

{\itshape Sometimes we want italics}, but only sometimes.

becomes

Sometimes we want italics, but only sometimes.

The braced region is called a group, and commands issued inside a group lose their
power once it ends. Environments also create their own groups:

\begin{quote}

\itshape If I italicize a quote, the following text will

use upright type again.

\end{quote}

See? Back to normal.

typesets

If I italicize a quote, the following text will use upright
type again.

See? Back to normal.

You can also use groups to prevent spacing oddities with zero-argument commands:
some prefer {\LaTeX} over \LaTeX{}.

12

4. Document Structure
Every LATEX document is different, but all share a few common elements.

Preambles and packages
In the last chapter, you built your first document with:

\documentclass{article}

\begin{document}

Hello, World!

\end{document}

The space between \documentclass and the start of the document environment is
called the preamble. Here we handle whatever setup we need, including importing
packages. These add new commands, or modify the document in interesting ways.
The ones in your LATEX distribution come from the Comprehensive TEX Archive
Network—or ctan—at https://ctan.org.* You will also find package manuals
there, so make it your first stop when learning how to use one.

To import a package, add a \usepackage command with its name as the ar-
gument. As a simple example, let’s write a document with the metalogo package,
which adds \LuaLaTeX and \XeLaTeX:

\documentclass{article}

\usepackage{metalogo}

*Curious readers might wonder what TEX is, and how it differs from LATEX. The short answer
is that TEX is the original program, and LATEX is a set of common commands that were later
built on top of it. A longer answer is at the end of this guide under Appendix A. We won’t
discuss how to use plain TEX here. That is for another book—The TEXbook.

13

https://ctan.org

\begin{document}

\XeLaTeX{} and \LuaLaTeX{} are neat.

\end{document}

should get you a pdf that reads

X ELATEX and LuaLATEX are neat.

\usepackage accepts optional arguments and passes them to whatever code you
are importing. The geometry package, for instance, takes your desired paper size
and margins. For us letter paper with one-inch margins, type:

\usepackage[

letterpaper,

left=1in, right=1in, top=1in, bottom=1in

]{geometry}

Arguments can be spaced however you like, so long as there are no empty lines
between them.

Hierarchy
Authors often split their writing into sections to help readers navigate it. LATEX
offers seven different commands to break up your documents: \part, \chapter,
\section, \subsection, \subsubsection, \paragraph, and \subparagraph.
Issue the command where you want an area to start, providing its name as the
argument. For example,

\documentclass{book}

\begin{document}

\chapter{The Start}

This is a very short chapter in a very short book.

\chapter{The End}

14

Is the book over yet?

\section{No!}

There's some more we must do before we go.

\section{Yes!}

Goodbye!

\end{document}

Some levels are only available in certain document classes—chapters, for example,
only appear in books. And don’t go too crazy with these commands. Most works
just need a few levels to organize them.

These bits of structure are automatically numbered. The title of this chapter was
produced with \chapter{Document Structure}, and LATEX figured out that it
was chapter 4.

On your own
As promised, this book won’t try to be a comprehensive reference, but it will point
you to places where you can learn more. We’ll wrap up most chapters with some
related topics that you can explore yourself.

Consider learning how to:

• Automatically start your document with its title, your name, and the date
using \maketitle.

• Build a table of contents with \tableofcontents.

• Control section numbering with \setcounter{secnumdepth} or starred
commands like \subsection*{foo}.

• Create cross-references with \label and \ref.

• Use KOMA Script, a set of packages that let you customize nearly every
aspect of your document, from heading fonts to footnotes.

• Include images with the graphicx package.

15

• Add hyperlinks with the hyperref package.

• Split large documents into multiple source files using \input.

16

5. Formatting Text

Emphasis
Sometimes you need some extra punch to get your point across. The simplest
way to emphasize text in LATEX is with the \emph command, which italicizes its
argument:

\emph{Oh my!}

gives us

Oh my!

We have other tools at our disposal:

We can also use \textbf{boldface} or \textsc{small caps}.

producing

We can also use boldface or small caps.

Be judicious when you use emphasis, especially boldface, which excels at drawing
the reader’s attention away from everything around it. Toomuch is distracting.

Meeting the whole (type) family
Boldface and italics are just a few of the many styles you can use. A (mostly)
complete list follows:

17

Command Alternative Style
\textnormal{...} {\normalfont ...} the default
\emph{...} {\em ...} emphasis, typically italics
\textrm{...} {\rmfamily ...} roman (serif) type
\textsf{...} {\sffamily ...} sans serif type
\texttt{...} {\ttfamily ...} teletype (monospaced)
\textit{...} {\itshape ...} italics
\textsl{...} {\slshape ...} slanted, or oblique type
\textsc{...} {\scshape ...} Small Capitals
\textbf{...} {\bfseries ...} boldface

Prefer the first form, which takes the text to format as an argument, over the second,
which affects the group it is issued in. The former automatically improves spacing
around the formatted text. For example, italic type amidst upright type should be
followed by a slight amount of additional space, called an “italic correction”. The
latter is your only option when formatting multiple paragraphs or defining the style
of other commands.*

Sizes
The font size of body text—that is, your main content—is usually ten points,† but
can be adjusted by passing arguments to \documentclass.‡ To scale text relative
to this default size, use the following commands:

\tiny Example Text

\scriptsize Example Text

\footnotesize Example Text
\small Example Text
\normalsize Example Text
\large Example Text

*For instance, this book’s section headers are styled with \Large\itshape.
†The standard digital publishing point, sometimes called the PostScript point, is 1⁄₇₂ of an
inch. LATEX, for historical reasons, defines its point (pt) as 1⁰⁰⁄₇₂₂₇ of an inch and the former
as “big points”, or bp. Use whichever you would like.

‡Stock LATEX classes accept 10pt, 11pt, or 12pt as optional arguments. KOMA Script classes
accept arbitrary sizes with fontsize=<size>.

18

\Large Example Text
\LARGE Example Text
\huge Example Text
\Huge Example Text

If you look carefully, you will find some subtleties at play here. LATEX’s default
type family, Latin Modern, comes in several optical sizes. Smaller fonts aren’t just
shrunken versions of their big siblings—they have thicker strokes, exaggerated
features, and more generous spacing to improve legibility at their size.

If I make 5 point type the same height as 11 point type,
you can easily spot the differences.

Back when fonts were made out of metal, multiple optical sizes were standard. But
many digital fonts only have one, since each optical size requires a great deal of
careful design.*

Points and optical sizes don’t tell the whole story. Each typeface has different
proportions which affect its perceived size. (Compare Garamond, Latin Modern,
Futura, andHelvetica, all at 11 points.) Shown below are some common terms:

Type sits on the baseline, rises to its ascender height, and drops to
its descender height. The cap height refers to the size of uppercase
letters, and the x-height refers to the size of lowercase letters.

If the previous commands don’t give you a size you need, you can create cus-
tom ones with \fontsize, which takes both a text size and a distance between
baselines. This must be followed with \selectfont to take effect. For example,
\fontsize{30pt}{30pt}\selectfont produces

*If you have typefaces with multiple optical sizes, LuaLATEX and X ELATEX can make good use
of them! See chapter 9 for more on font selection.

19

large type with no
additional space
between lines

Note how without some extra space, or leading,* descenders from one line almost
collide with ascenders and capitals on the next. Leading is important—without it,
blocks of text become uncomfortable to read, especially at normal body sizes.
Let your type breathe!†

On your own
• Learn how to underline text with the ulem package.‡

• Use KOMA Script to change the size and style of your section headings.

• Learn the difference between italic and oblique type.

• Change the default text style (used by \textnormal and \normalfont) by
redefining \familydefault.

*This term comes from the days of metal type, when strips of lead or brass were inserted
between lines to space them out.1

†For a discussion of how much leading to use, see Practical Typography, as mentioned in
Appendix B.
‡Other typographical tools—like italics, boldface, and small caps—are generally preferable
to underlining, but it has its uses.

20

6. Punctuation
You would rather encounter a panda that eats shoots and leaves than one that eats,
shoots, and leaves.2 Punctuation is a vital part of writing, and there’s more to it
than your keyboard suggests.

Quotation marks
LATEX doesn’t automatically convert "straight" quotes into correctly-facing “curly”
ones:

"This isn't right."

will get you

”This isn’t right.”

Instead, use ` for opening quotes and ' for closing quotes.*

``It depends on what the meaning of the word `is' is.''

quotes a former us president as,

“It depends on what the meaning of the word ‘is’ is.”

*If your keyboard happens to have keys for “curly” quotes (“ ”), feel free to use those instead!
And don’t use " for closing double quotes. Not only does ``example" look a bit unbalanced,
but " is used as a formatting command for some languages, like German. (See chapter 11
for more on international typesetting.)

21

Hyphens and dashes
Though they look similar, hyphens (-), en dashes (–), em dashes (—), and minus
signs (−) serve different purposes.

Hyphens have a few applications:3

• They allow words to be split across the end of one line and the start of the
next. LATEX does this automatically.

• Compound words like long-range and field-effect use hyphens.

• They are used in phrasal adjectives. If I ask for “five dollar bills”, do I want five
$1 bills, or several $5 bills? Five-dollar bills makes it clearer that I want the
latter.

Unsurprisingly, you get one by typing the hyphen character (-).

En dashes are for ranges such as “pages 4–12”, and connected words, like “the
US–Canada border”. LATEX places one wherever you enter two adjacent hyphens
(--).

Em dashes separate clauses of a sentence. Other punctuation—like parenthesis
and commas—play a similar role. Em dashes are typeset with three hyphens
(---).

Minus signs are for negative quantities and mathematical expressions. They are
similar in length to an en dash, but sit at a different height. Minus signs are set
with \textminus, or with the hyphen character when in a math environment
(see chapter 8).

Ellipses
A set of three dots which indicate a pause or omission is called an ellipsis. It is set
with \dots.

I'm\dots{} not sure.

becomes

22

I’m… not sure.

Ellipses have different spacing than consecutive periods. Don’t use the latter as a
poor substitute for the former.

Spacing
As we discovered in chapter 3, LATEX inserts additional space between periods
and whatever follows them—presumably the start of the next sentence. This isn’t
always what we want! Consider honorifics like Mr. and Ms., for example. In these
situations, we also need to prevent LATEX from starting a new line after the period.
This calls for a non-breaking space, which we set with a tilde.

Please call Ms.~Shrdlu.

produces proper spacing:

Please call Ms. Shrdlu.

In other occasions, like when we abbreviate units of measurement,* we want
thinner spaces than our usual inter-word ones. For these, we use \, :

Launch in 2\,h 10\,m.

announces

Launch in 2 h 10m.

On your own
• Learn more commands for spacing, such as \:, \;, \enspace, and \quad.

• Nest quotations, e.g., “She exclaimed, ‘I can’t believe it!’” more easily with
csquotes package’s \enquote command.

*There are also dedicated packages for doing so, like siunitx.

23

• Discover the typographical origins of terms like en, em, and quad.

• Familiarize yourself with the difference between / and \slash.

• Add hyphenations for uncommon words using \hyphenate or \- .*

*LATEX usually does a great job of automatically hyphenating words, based on a dictionary
of patterns stored for each language. You should rarely need these commands.

24

7. Layout

Justification and alignment
LATEX justifies text remarkably well. Instead of arranging it one line at a time—like
most word processors, web browsers, and e-readers do—it considers every possible
line break in a paragraph, then picks the ones that give the best overall spacing.⁴
Combined with automatic hyphenation, which permits line breaks in the middle
of words,⁵ it can produce better paragraph layouts than almost any other software.

But sometimes we don’t want justified text. If you would like it to be flush left,
place it in a flushleft environment or add \raggedright to the current group.
To center it, place it in a center environment or add \centering to the current
group. And to flush it against the right margin, use a flushright environment or
\raggedleft.

\begin{flushleft}

This text is flush left, with a ragged right edge.

Some prefer this layout since the space between words

is more consistent than it is in justified text.

\end{flushleft}

\begin{center}

This text is centered.

\end{center}

\begin{flushright}

And this text is flush right.

\end{flushright}

sets

25

This text is flush left, with a ragged right edge. Some prefer this
layout since the space between words is more consistent than it is in
justified text.

This text is centered.

And this text is flush right.

Lists
LATEX provides several environments for creating lists: itemize, enumerate, and
description. In all three, each item starts with an \item command. To create
bulleted lists, use the itemize environment. With

\begin{itemize}

\item 5.56 millimeter

\item 9 millimeter

\item 7.62 millimeter

\end{itemize}

you get

• 5.56 millimeter
• 9 millimeter
• 7.62 millimeter

enumerate numbers its lists:

\begin{enumerate}

\item Collect underpants

\item ?

\item Profit

\end{enumerate}

which gives

26

1. Collect underpants

2. ?

3. Profit

The description environment starts each item with some emphasized label, then
indents subsequent lines for that item:

\begin{description}

\item[Alan Turing] was a British mathematician who

laid much of the groundwork for computer science.

He is perhaps most remembered for his model of

computation, the Turing machine.

\item[Edsger Dijkstra] was a Dutch computer scientist.

His work in many domains---such as concurrency and

graph theory---are still in wide use.

\item[Leslie Lamport] is an American computer scientist.

He defined the concept of sequential consistency,

which is used to safely communicate between tasks

running in parallel.

\end{description}

gives us

Alan Turing was a British mathematician who laid much of the
groundwork for computer science. He is perhaps most remem-
bered for his model of computation, the Turing machine.

Edsger Dijkstra was a Dutch computer scientist. His work in
many domains—such as concurrency and graph theory—are
still in wide use.

Leslie Lamport is an American computer scientist. He defined
the concept of sequential consistency, which is used to safely
communicate between tasks running in parallel.

27

Columns
We often split pages into several columns, especially when printing on a4 or
us letter paper, since it provides more comfortable line widths with standard
8–12 pt text sizes.* You can either add the twocolumn option to your document
class, which splits everything in two, or you can use the multicols environment
from the multicol package:

One nice feature of the \texttt{multicol} package

is that you can combine arbitrary layouts.

\begin{multicols}{2}

This example starts with one column,

then sets the following section as two.

The \texttt{multicols} environment splits the text

inside it so that each column is about the same height.

\end{multicols}

arranges

One nice feature of the multicol package is that you can combine
arbitrary layouts.

This example starts with one
column, then sets the following
section as two. The multicols

environment splits the text in-
side it so that each column is
about the same height.

Page breaks
Some commands, like \chapter, insert page breaks. You can add your own with
\clearpage. When using the twoside document class option for double-sided
printing, you can break to the front of the next page with \cleardoublepage.

*You will find different advice depending on where you look, but as a rule of thumb, aim
for 45 to 80 characters (including spaces) per line. If a line is too long, readers have
an uncomfortable time scanning for the start of the next one. If a line is too short, it
doesn’t have much inter-word spacing to adjust, which can lead to odd gaps or excessive
hyphenation.

28

Footnotes
Footnotes are useful for references, or for remarks that readers might find helpful
but aren’t crucial to the main text. The \footnote command places a marker at its
location in the body text, then sets its argument at the bottom of the current page:

I love footnotes!\footnote{Perhaps a bit too much\dots}

proclaims

I love footnotes!*

On your own
• Control paragraph spacing with KOMA Script or the parskip package.

• Set the page size and margins with the geometry package.

• Customize list formatting with the enumitem package.

• Create tables with the tabular environment.

• Align text with tab stops using the tabbing environment.

• Customize footnote symbols and layout with the footmisc package and
KOMA Script.

• Insert horizontal and vertical space with commands like \vspace, \hspace,
\vfill, and \hfill.

• Learn what units LATEX provides to measure space.
(We’ve already mentioned a few here, like pt, bp, and in.)

*Perhaps a bit too much…

29

8. Mathematics
LATEX excels at typesetting mathematics, both inside body text (x2n + y2n = r2)
and on their own lines:

∞∑
n=0

f (n)(a)

n!
(x− a)n

The former is typed inside $...$ or \(...\), and the latter within \[...\]. In
these math environments, the rules of LATEX change:

• Most spaces and line breaks are ignored. Spacing decisions are made for
you based on typographical conventions for mathematics. $x+y+z$ and
$x + y + z$ both give you x+ y + z.

• Empty lines are not allowed—each formula occupies a single “paragraph”.

• Letters are automatically italicized, as they are assumed to be variables.

To return to normal “text mode” inside a formula, use the \text command and
friends. Standard formatting commands work in these blocks. From

\[\text{fake formulas} = \textbf{annoyed mathematicians} \]

we get

fake formulas = annoyed mathematicians

Examples
Math typesetting is the raison d’être of LATEX,* but we could take dozens of pages
to just cover the basics. Given the breadth of modern mathematics, there aremany

*Well, TEX

30

different commands and environments. You owe it to yourself to find some real
references and learn what LATEX is capable of. But before moving on, let’s see some
examples of what it can do.

1. x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

x =
−b±

√
b2 − 4ac

2a

2. e^{j \theta} = \cos(\theta) + j \sin(\theta)

ejθ = cos(θ) + j sin(θ)

3. \begin{bmatrix}

x' \\

y'

\end{bmatrix} =

\begin{bmatrix}

\cos \theta & -\sin\theta \\

\sin \theta & \cos \theta

\end{bmatrix}

\begin{bmatrix}

x \\

y

\end{bmatrix}

[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
4. \oint_{\partial \Sigma} \mathbf{E} \cdot

\mathrm{d}\boldsymbol{\ell}

= - \frac{\mathrm{d}}{\mathrm{d}t}

\iint_{\Sigma} \mathbf{B} \cdot \mathrm{d}\mathbf{S}

∮
∂Σ

E · d` = − d
dt

∫∫
Σ

B · dS

31

On your own
• Number equations for later reference with the equaiton environment.

• Automatically size parenthesis and braces to fit their contents with \left

and \right.

• Learn some of the many helpful features of the amsmath package from the
American Mathematical Society, such as the align environment for lining
up equivalent equations.

32

9. Fonts
Digital fonts have completely changed since LATEX was created decades ago. LATEX
originally used METAFONT, a format Donald Knuth designed specifically for
TEX. As time went on, support for PostScript* fonts was added. Today, LuaLATEX
and X ELATEX support the modern font formats you will find on your computer:
TrueType and OpenType.†

TrueType was developed by Apple and Microsoft in the late 1980s. Most fonts
that come pre-installed on your system are probably in this format. TrueType
files generally end in a .ttf extension.

OpenType was first released by Microsoft and Adobe in 1996. Improvements over
TrueType include its ability to embed various features, such as alternative glyphs
and spacing options, into a single file. OpenType files usually end in an .otf

extension.

Changing fonts
By default, LuaLATEX and X ELATEX use Latin Modern, an OpenType rendition of
LATEX’s original type family, ComputerModern. While these are high-quality fonts,
they are not the only ones you ever want to use. For other fonts, we turn to the
fontspec package:

\documentclass{article}

\usepackage{fontspec}

*One of Adobe’s original claims to fame, PostScript is a language for defining and drawing
computer graphics, including type. It remains in widespread use today.

†Mac versions of LATEX also support Apple’s aat, but let’s limit this discussion to more
common formats.

33

\setmainfont[Ligatures=TeX]{Source Serif Pro}

\setsansfont[Ligatures=TeX]{Source Sans Pro}

\setmonofont{Source Code Pro}

\begin{document}

Hello, Source type family! Neat---no? \\

\sffamily Let's try sans serif! \\

\ttfamily Let's try monospaced!

\end{document}

should produce something like*

Hello, Source type family! Neat—no?
Let’s try sans serif!
Let's try monospaced!

The Ligatures=TeX option lets you use the punctuation shortcuts from chapter 6
(-- for en dashes, `` and '' for curly quotes, etc.) instead of forcing you to enter
the corresponding characters, which probably aren’t on your keyboard. You usually
don’t want these substitutions with monospaced type, though. Text that uses it—
such as code—is oftenmeant to be printed verbatim. "Hello!" should not become
“Hello!“.

Selecting font files
fontspec usually finds the files you need for a given typeface, especially if you just
want the basic set of upright, italic, bold, and bold italic fonts. But typefaces can
have many more than that. The version of Futura in this book, for example, comes
in light, book, medium, demi, bold, and extra bold weights. Each of these weights
has an oblique font, too. A typeface could have other variations, like small capitals†

or multiple optical sizes (see chapter 5).

*Assuming, of course, that you have Adobe’s open-source fonts installed.⁶
†OpenType allows some styles, like small caps, to be placed in the same file(s) as the “main”
glyphs for a given weight. If your font supports this, fontspec will automatically switch to
them whenever you use \textsc or \scshape. But for TrueType fonts, and for OpenType
fonts that don’t leverage this feature, you will have to specify separate files.

34

We might want to hand-pick weights to achieve a certain look, or to better
match the other fonts in our document.* Continuing to use Futura as an example,
say we want “book” as our default weight and “demi” for bold. Assuming the font
files are named:

• Futura-Boo for upright book weight

• Futura-BooObl for oblique book weight

• FuturaSC-Boo for small caps, book weight

• Futura-Dem for upright demi(bold)

• Futura-DemObl for oblique demibold

Our setup might resemble:

\usepackage{fontspec}

\setmainfont[

Ligatures=TeX,

UprightFont = *-Boo,

ItalicFont = *-BooObl,

SmallCapsFont = *SC-Boo,

BoldFont = *-Dem,

BoldItalicFont = *-DemObl

]{Futura}

Note that instead of typing out Futura-Boo, Futura-BooObl, and so on, we can
use * to insert the base name.†

*Compare how the light, book, and medium weights of Futura look next to the rest of the type
on this page.

†This is a place where X ELATEX and LuaLATEX differ. The former uses system libraries—such
as FontConfig on Linux—to find font files. The latter has its own font loader, based on code
from FontForge.⁷ Because the two look for files in different ways, the expected name of a
font might differ between the two engines. See the fontspec package manual for details.

35

Scaling
Creating a cohesive design with multiple fonts is tricky, especially since they might
look completely different at the same point size. fontspec can help by scaling
fonts to match either the x-height or the cap height* of your main font with
Scale=MatchLowercase or Scale=MatchUppercase, respectively. But one way
to sidestep this issue is to use fewer typefaces in the first place. Just one or two, used
carefully, can produce amazing results.

OpenType features
As mentioned at the start of the chapter, OpenType fonts provide many features
that can be switched on and off. In LATEX, we do this with optional arguments
to \setmainfont and friends. Features can also be set for the current group with
\addfontfeature. Let’s examine some common ones.

Ligatures
Many typefaces use ligatures, which combine multiple characters into a single
glyph.† OpenType groups them into three categories:

Standard ligatures remedy spacing problems between certain characters. Consider
lowercase f and i: in many typefaces, these combine to form the ligature fi—this
avoids awkward spacing between f ’s ascender and i’s dot (fi). Other common
examples in English writing include ff, ffi, fl, and ffl. Standard ligatures are
enabled by default.

Discretionary ligatures, such as ct, are offered by some fonts. They’re disabled by
default but enabled with Ligatures=Discretionary.

Historical ligatures are ones which have fallen out of common use, such as those
with a long s (e.g., st). These are also disabled by default but can be enabled with
Ligatures=Historic.

*Refer back to chapter 5 for an explanation of these heights.
†Ligatures fell out of style during the 20th century due to limitations of printing technology
and the increased popularity of sans serif typefaces, which often lack them. Today they are
making a comeback, thanks in no small part to their support in OpenType.

36

Multiple options can be grouped together. Say you want discretionary ligatures.
In the likely event that you also want Ligatures=TeX, you would enable both
with Ligatures={TeX,Discretionary}. Ligatures can also be disabled with
corresponding *Off options. If you want to stop using discretionary ligatures for
some passage,

{\addfontfeature{Ligatures=DiscretionaryOff}...}

does the trick.
Some words arguably look better without ligatures—shelfful is a classic exam-

ple.⁸ You can manually prevent a ligature by inserting a zero-width space, e.g.,
shelf\hspace{0pt}ful. Or, since life is too short, you can let the selnolig
package handle these cases for you.

Figures
When setting figures,* you have two choices to make: lining versus text, and propor-
tional versus tabular. Lining figures, sometimes called titling figures, have heights
similar to capital letters:

A B C D 1 2 3 4

Text, or oldstyle figures, share more similarities with lowercase letters:

Sitting cross-legged on the floor… 25 or 6 to 4?

Either choice is fine for body text, but don’t mix capital letters with text figures.
“F-15C” looks odd, as does “V2.3 Release”.

The terms proportional and tabular refer to spacing. Tabular figures are set with
a uniform width, so that 1 takes up the same space as 8. As their name suggests, this
is great for tables and other scenarios where figures line up in columns:

Item Qty. Price
Gadgets 42 $5.37
Widgets 18 $12.76

*Figures is typography-speak for what we might also call digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

37

Proportional figures are the opposite—their spacing is, well… proportional to the
width of each figure. They look a bit nicer in body text: 1837 looks more natural
here than 1837 does.

You select figures with the following options:

Numbers= Lining / Uppercase

OldStyle / Lowercase

Proportional

Tabular / Monospaced

Like ligature options, these can be combined: proportional lining figures are set
with Numbers={Proportional,Lining}, and tabular oldstyle figures are set with
Numbers={Tabular,OldStyle}. Each option also has a corresponding *Off vari-
ant.*

Finally, some fonts provide superior and inferior figures, which are used to
set ordinals (1st, 2ⁿd 3rd, …), fractions (2⁵⁄₆₂₄), and so on. They have the same
weight as the rest of the font’s characters, offering a more consistent look than
shrunken versions of full-sized figures. (Compare the examples above to their
imposters: 1st, 2nd, 3rd, and 25 ⁄624 . Notice how this second set is too light compared
to the surrounding type.) Superior figures are typeset with VerticalPosition=

Superior, and inferiors are set with VerticalPosition=Inferior.

On your own
• Learn how fontspec can choose optical sizes based on point size, either

automatically from ranges embedded in OpenType fonts, or manually using
SizeFeatures.

• Experiment with letter spacing—or tracking—with the LetterSpace op-
tion. Extra tracking is unnecessary in most cases, but can be useful to make
small caps a little more readable.

*This is especially useful since different fonts have different defaults. Some fonts use lining
figures by default and enable text figures with Numbers=OldStyle. Others default to text
figures and require Numbers=Lining.

38

10. Microtypography

Microtypography improves text’s legibility with small, subliminal tweaks. It is

[…]the art of enhancing the appearance and readability of a document while
exhibiting a minimum degree of visual obtrusion. It is concerned with what
happens between or at themargins of characters, words or lines. Whereas the
macro-typographical aspects of a document (i.e., its layout) are clearly visible
even to the untrained eye, micro-typographical refinements should ideally
not even be recognisable. That is, youmay think that a document looks beau-
tiful, but you might not be able to tell exactly why: good micro-typographic
practice tries to reduce all potential irritations that might disturb a reader.⁹

In LATEX, microtypography is controlled with the microtype package. Its use
is automatic—for the vast majority of documents, you should add

\usepackage{microtype}

to your preamble and move on. But let’s take a quick look at what the package
actually does.

Character protrusion
By default, LATEX justifies lines between perfectly straight margins. This is an
obvious default, but falls victim to an annoying optical illusion: lines ending in
small glyphs—like periods, commas, or hyphens—seem shorter than lines that
don’t.* microtype compensates by protruding these glyphs into the margins.

*Many other optical illusions come up in typography. For example, if a circle, a square,
and a triangle of equal heights are placed next to each other, the circle and triangle look
smaller than the square. For this reason, round or pointed characters (like O and A) must
be slightly taller than “flat” ones (such as H and T) for all to appear the same height.1⁰

39

Font expansion
To give paragraphs more even spacing and fewer hyphenated lines, microtype can
stretch characters horizontally. Youmight think that distorting type like this would
be immediately noticeable, but you’re reading a book that does it on every page!
This effect, called font expansion, is applied very slightly—by default, character
widths are altered by no more than two percent.*

This feature isn’t currently available for X ELATEX. If you want to use it, you need
LuaLATEX.

On your own
As always, see the package manual for ways to tweak these features. microtype has
a few other tricks, but several only work on older LATEX engines.† Those we care
about—such as letterspacing—can be handled with fontspec or other packages.

*Of course, you can use package options to change this limit, or disable the feature entirely.
†i.e., pdfTEX

40

11. Typographie Internationale

Surprisingly, languages besides English exist. You may want to write with them.

Unicode
Digitizing written language is a complicated topic that has evolved significantly
since LATEX’s inception. Today, most software uses Unicode to represent text.
Briefly,

• A Unicode text file is a series of code points. Each represents a character to be
drawn, an accent or diacritical mark to combine with an adjacent character,
or formatting information, such as an instruction to print subsequent text
right-to-left.

• One or more of these code points combine to represent a grapheme cluster
or glyph, the shapes within fonts that we informally call “characters”.

Приве́т नमस्ते

How many characters do you see? How many code points?

• Modern font formats contain tables which map code points to the glyphs
the file contains.

LuaLATEX and X ELATEX are Unicode-literate and play well with Unicode text files.*
Make sure that the fonts you select contain the glyphs youneed—manyonly support
Latin languages.

*LuaLATEX accepts utf-8 files. X ELATEX also accepts utf-16 and utf-32.

41

Polyglossia
When your document contains languages besides English, consider using the
polyglossia package. It will automatically:

• Load language-specific hyphenations and other conventions.

• Switch between user-specified fonts for each language.

• Translate document labels, like “chapter”, “section”, and so on.

• Format dates according to language-specific conventions.

• Format numbers in languages that have their own numbering system.

• Use the bidi package for documents with languages written right to left.

• Set the script and language tags of OpenType fonts that have them.

Tousepolyglossia, specify your document’smain language, alongwith any others
it uses. Some languages also take regional dialects as an optional argument:

\usepackage{polyglossia}

\setdefaultlanguage[variant=american]{english}

\setotherlanguage{french}

Once set up, polyglossia defines environments for the requested languages. Each
automatically applies their language’s conventions to the text within. French, for
example, places extra space around punctuation, so

Dexter cried,

\begin{french}

«Omelette du fromage!»

\end{french}

gives

Dexter cried, «Omelette du* fromage ! »

*Yes, it’s omelette au fromage. Direct all complaints to Genndy Tartakovsky.

42

On your own
• See the polyglossiamanual for language-specific commands.

• Look into the babel package as an alternative to polyglossia.*

• Try typesetting Japanese or Chinese with the xeCJK or luatex-ja
packages.

*polyglossia has better support for OpenType font features via fontspec. However, it is
newer and has a few known bugs. babel is a fine substitute if you run into trouble.

43

12. When Good Type Goes Bad

With luck, you’re off to a solid start with LATEX. But as with any complicated tool,
you will eventually run into trouble. Here are some common problems and things
you can try to fix them.

Fixing overflow
When LATEX can’t break a paragraph into well-spaced lines, it gives up and overflows
into the margin. You can sometimes remedy this with some “emergency stretch”. If
you add \emergencystretch=<width> to the preamble, LATEX will try to set trou-
blesome paragraphs a second time, stretching or shrinking the total space in each
line by up to the provided width.* If that still doesn’t help, tweak the wording of
problematic paragraphs. This can be frustrating, but the alternative is for LATEX to
create spacing that is too loose—where words have large gaps between
them—or too tight, wherewordsareawkwardlycrammedtogether.

Avoiding widows and orphans
Good layouts avoid widow and orphan (also called club) lines: ones that get sepa-
rated from the rest of their paragraph by a page boundary. LATEX tries to prevent
these, but its page-splitting algorithm is much more primitive than its paragraph-
splitting one.† You can make LATEX try harder to avoid orphans and widows with:

*LATEX has pretty sane defaults for how much it stretches and shrinks spacing. You probably
don’t want to make <width> larger than an em or two.

†This is because 1980s computers didn’t have enough ram to do so. Seriously—Knuth
wrote at the time, “The computer doesn’t have enough high-speed memory capacity to
remember the contents of several pages, so TEX simply chooses each page break as best it
can, by a process of ‘local’ rather than ‘global’ optimization.” 11

44

\widowpenalty=<penalty>

\clubpenalty=<penalty>

<penalty> is a value between 0 and 10000. When these values are maximized,
LATEX is never allowed to leave orphans or widows, at any cost.* This can produce
some really odd layouts, so be sure to review your pages if you choose large penalties.

Handling syntax errors
If you confuse LATEX—say, by issuing commands that don’t exist, or forgetting to
end an environment—it will print an error message,† then display an interactive
prompt starting with ? . Here you can enter instructions for how to proceed. Once
upon a time, when computers were thousands of times slower and LATEX took that
much longer to re-run, this was more useful. Today, we probably just want to quit,
then try again once we’ve fixed our document. To exit the prompt, type X, then
press Enter. Better yet, you can tell LATEX to give up as soon as it finds trouble by
running your engine with the -halt-on-error flag:

$ lualatex -halt-on-error myDocument.tex

Good luck!

*When considering a given layout, LATEX assigns penalties, or “badness”, to anything that
arguably makes a document look worse. It chooses whichever layout it can find with the
least badness.

†Usually this contains a succinct summary of the problem and the number of the line(s) it
occurred on. Occasionally, LATEX gets really confused and emits something so cryptic it
gives C++ template errors a run for their money. As you use LATEX, you will start to get a
feel for what sorts of mistakes cause these rare, but enigmatic messages.

45

A. A Brief History of LATEX

Donald Knuth is a father of computer science, famous for pioneering the analysis of
algorithms and for his ongoing magnum opus, The Art of Computer Programming.

When the first volume of taocp was released in 1968, it was printed the way
books had been since the turn of the century: with hot metal type. Letters were
cast from molten lead, then arranged into lines. These lines were clamped together
to form pages, which were inked and pressed against paper.

In March of 1977, Knuth was ready for a second run of taocp, volume 2, but
he was horrified when he received proofs. Working with hot metal was expensive,
complicated, and time-consuming, so publishers—including Knuth’s—switched
to phototypesetting, a process that projects characters onto film instead. The new
technology, while cheaper and faster, didn’t provide the quality Knuth expected.12

The average author would have resigned themselves to this change and moved
on, but Knuth took great pride in his books’ typography, especially when it came
to their mathematics. Inspired by his recent introduction to the growing field of
digital typesetting, Knuth set off on one of the greatest yak shaves* of all time.
Setting aside his other work, he hammered on this problem for more than a year.
When the dust settled in 1978, Knuth introduced the world to TEX.†

It’s hard to appreciate how much of a revolution TEX was, especially looking
back from today, where anybody with a web browser can be their own desktop pub-
lisher. Adobe’s pdf wouldn’t exist for another decade, so Knuth and his graduate
students devised their own device-independent document format, dvi. Scalable
fonts were uncommon, so he created METAFONT to rasterize glyphs into dots on
the page. Perhaps most importantly, Knuth and his students designed algorithms
to automatically hyphenate and justify text into beautifully-typeset paragraphs.‡

LATEX, short for Lamport TEX, was developed by Leslie Lamport in the early
1980s as a set of commands for common document layouts. He introduced it
with his guide, LATEX: A Document Preparation System, in 1986. Development

*Programmers call seemingly-unrelated work needed to solve their main problem “yak
shaving”. The phrase is thought to originate from an episode of The Ren & Stimpy Show.13

†The name “TEX” comes from the Greek τέχνη, meaning art or craft.1⁴
‡These same algorithms went on to influence the ones Adobe uses in its software today.1⁵

46

continues today, both in the form of user-provided packages for TEX and LATEX,
and as improvements to the TEX typesetting program itself. There are four versions,
or engines:

TEX is the original system by Donald Knuth. Knuth stopped adding features
after version 3.0 in March 1990—subsequent releases contain only bug fixes.
With each release, the version number asymptotically approaches π by adding
an additional digit. The most recent version, 3.141592653, came out in 2021.

pdfTEX is an extension of TEX that provides direct pdf output, native support
for PostScript and TrueType fonts, and micro-typographic features discussed in
chapter 10. It was originally developed by Hàn Thế Thành as part of his PhD
thesis for Masaryk University in Brno, Czech Republic.1⁶

X ETEX is a further extension of TEX that adds native support for Unicode and
OpenType. It was originally developed by Jonathan Kew in the early 2000s, and
gained full cross-platform support in 2007.1⁷

LuaTEX is similar to X ETEX in its native Unicode and modern font support. It
also embeds the Lua scripting language into the engine, exposing an interface for
package and document authors. It first appeared in 2007, developed by a core
team of Hans Hagen, Hartmut Henkel, Taco Hoekwater, and Luigi Scarso.1⁸

Building TEX today is an… interesting endeavor. When it was written in the late
1970s, there were no large, well-documented, open-source projects for computer
science students to study, so Knuth set out to make one. As part of this effort,
TEX was written in a style he calls literate programming : opposite most programs—
where documentation is interspersed throughout the code—Knuth wrote TEX as a
book, with the code inserted between paragraphs. This mix of English and code is
called WEB.*

Unfortunately, modern systems don’t have good tooling for the 1970s dialect of
Pascal that TEX was written in, so present-day distributions use another program,
web2c, to convert its WEB source into C code. pdfTEX and X ETEX are built by
combining the result with other C and C++ sources. As an alternative to this
complicated approach, the LuaTEX authors hand-translated Knuth’s Pascal into C.
They have used the resulting code since 2009.1⁹

*Knuth also released a pair of companion programs named TANGLE and WEAVE. The former
extracts the book—as TEX, of course—and the latter produces TEX’s Pascal source code.

47

B. Additional Resources

For LATEX

As promised from the start, this book is incomplete. To keep it short, major LATEX
features—like figures, captions, tables, graphics, and bibliographies—haven’t been
discussed. Use some of these resources to fill in the gaps:

The LATEX Wikibook, at https://en.wikibooks.org/wiki/LaTeX

The Not So Short Introduction to LATEX,
available athttps://www.ctan.org/tex-archive/info/lshort/english/

The ShareLATEXknowledge base, at https://www.sharelatex.com/learn

The TEX Stack Exchange, at https://tex.stackexchange.com/

For typography

We’ve spent most of our time here focusing on what you can do with LATEX, and
little on how you should use it to create well-designed documents. Read on:

Practical Typography, by Matthew Butterick.
Available (for free!) at https://practicaltypography.com

Stop Stealing Sheep & Find Out How TypeWorks, by Erik Spiekermann

ThinkingWith Type, by Ellen Lupton

Shaping Text, by Jan Middendorp

The Elements of Typographic Style, by Robert Bringhurst

Detail in Typography, by Jost Hochuli

48

https://en.wikibooks.org/wiki/LaTeX
https://www.ctan.org/tex-archive/info/lshort/english/
https://www.sharelatex.com/learn
https://tex.stackexchange.com/
https://practicaltypography.com

Notes

1. Jan Middendorp, Shaping Text (Amsterdam, 2014), 71

2. Lynne Truss, Eats, Shoots & Leaves (New York, 2003)

3. Matthew Butterick, “Hyphens and dashes”, Practical Typography,
https://practicaltypography.com/hyphens-and-dashes.html

4. Donald E. Knuth and Michael F. Plass, Breaking Paragraphs Into Lines
(Stanford, 1981)

5. Franklin Mark Liang,Word Hy-phen-a-tion by Com-put-er (Stanford, 1983),
http://www.tug.org/docs/liang/

6. Adobe’s open-source typefaces are freely available at
https://github.com/adobe-fonts

7. LuaTEX Reference (Version 1.0.4, February 2017), 10

8. Knuth, The TEXbook, (Addison-Wesley, 1986), 19

9. R Schlicht, The microtype package (v2.7a, January 14, 2018), 4

10. Jost Hochuli,Detail in typography (Éditions b42, 2015), 18–19

11. Knuth, The TEXbook, 110

12. Knuth,Digital Typography (Stanford, 1999), 3–5

13. “yak shaving”, The Jargon File,
www.catb.org/~esr/jargon/html/Y/yak-shaving.html

14. Knuth, The TEXbook, 1

15. Several sources (http://www.tug.org/whatis.html,
https://tug.org/interviews/thanh.html,
http://www.typophile.com/node/34620) mention TEX’s influence on

49

https://practicaltypography.com/hyphens-and-dashes.html
http://www.tug.org/docs/liang/
https://github.com/adobe-fonts
http://www.catb.org/~esr/jargon/html/Y/yak-shaving.html
http://www.tug.org/whatis.html
https://tug.org/interviews/thanh.html
http://www.typophile.com/node/34620

the hz-program by Peter Karow and Hermann Zapf, thanks to Knuth’s
collaborations with Zapf. hz was later acquired by Adobe and used when
creating InDesign’s paragraph formatting systems.

16. Hàn Thế Thành,Micro-typographic extensions to the TEX typesetting system
(Masaryk University Brno, October 2000)

17. Jonathan Kew, “X ETEX Live”, TUGboat 29, no. 1 (2007)

18. http://www.luatex.org

19. Taco Hoekwater, LuaTEX says goodbye to Pascal (MAPS 39, EuroTEX 2009),
https://www.tug.org/TUGboat/tb30-3/tb96hoekwater-pascal.pdf

50

http://www.luatex.org
https://www.tug.org/TUGboat/tb30-3/tb96hoekwater-pascal.pdf

Colophon

This guide was typeset with LuaLATEX in Robert Slimbach’s Garamond Premier,
a revival of roman type by 16th century French punchcutter Claude Garamond.
Italics are inspired by the work of Garamond’s contemporary Robert Granjon.

Monospaced items are set in Drive Mono, designed by Elliott Amblard and Jérémie
Hornus at Black Foundry.

Captions use Neue Haas Grotesk, a Helvetica restoration by Christian Schwartz.
Earlier digitizations of the ubiquitous Swiss typeface are based on fonts made
for Linotype and phototypesetting machines, resulting in digital versions with
needless compromises and kludges from the two previous generations of printing
technology. Schwartz based his work on Helvetica’s original drawings, producing a
design faithful to the original cold metal type.

URW Futura makes a few guest appearances. Designed by Paul Renner and first
released in 1927, Futura has found itself almost everywhere, from advertising and
political campaigns to the moon. Douglas Thomas’s recent history of the typeface,
Never Use Futura, is a fantastic read.

Various bits of non-Latin text are set in Noto, a type family by Google that covers
every glyph in the Unicode standard.

Finally, Latin Modern—the OpenType version of Knuth’s Computer Modern
used throughout the book—and TEX Gyre Termes—the free alternative to Times
Roman seen on page 1—are the work of Grupa Użytkowników Systemu TEX, the
Polish TEX Users’ Group. Overviews of these excellent projects can be found on
the gust website:
http://www.gust.org.pl/projects/e-foundry/latin-modern

http://www.gust.org.pl/projects/e-foundry/tex-gyre.

51

http://www.gust.org.pl/projects/e-foundry/latin-modern
http://www.gust.org.pl/projects/e-foundry/tex-gyre

	Typography and You
	What is LaTeX?
	Another guide?

	Installation
	Editors
	Online options

	Hello, LaTeX!
	Spacing
	Commands
	Special characters and line breaks
	Environments
	Groups and scopes

	Document Structure
	Preambles and packages
	Hierarchy
	On your own

	Formatting Text
	Emphasis
	Meeting the whole (type) family
	Sizes
	On your own

	Punctuation
	Quotation marks
	Hyphens and dashes
	Ellipses
	Spacing
	On your own

	Layout
	Justification and alignment
	Lists
	Columns
	Page breaks
	Footnotes
	On your own

	Mathematics
	Examples
	On your own

	Fonts
	Changing fonts
	Selecting font files
	Scaling
	OpenType features
	Ligatures
	Figures

	On your own

	Microtypography
	Character protrusion
	Font expansion
	On your own

	Typographie Internationale
	Unicode
	Polyglossia
	On your own

	When Good Type Goes Bad
	Fixing overflow
	Avoiding widows and orphans
	Handling syntax errors

	A Brief History of LaTeX
	Additional Resources
	For LaTeX
	For typography

	Notes
	Colophon

