
C++ on Embedded Systems

Matt Kline
matt@bitbashing.io

February 26, 2017

This October, my team at work switched from C to C++ for embedded firmware development.
Many of its features, including classes, automatic resource cleanup, parametric polymorphism,
and additional type safety are just as useful on an RTOS or bare metal as they are on a desktop
running a general-purpose OS. Using C++ lets us write safer, more expressive firmware.

C++’s automagic is a double-edged sword, however. Some language features depend on system
facilities that we don’t want to provide in embedded environments.* Wrangling the toolchain can
also be difficult. We don’t want to completely discard libgcc and libstdc++ since they provide
vital facilities like memcpy, atomic operations, and hardware-specific floating-point functions,
but we must avoid certain parts of them.

This guide is a short attempt to codify what we’ve learned while moving our firmware to C++.
Hopefully it provides a solid primer.

Setup

Building a toolchain

The good news is that GCC works very well as a cross-compiler for all sorts of targets, including
the ARM systems we usually use for embedded development.† While some variant can usually be
installed from your Linux distribution’s package manager, it is highly recommended that teams
build and use their own cross-compiler. This has several advantages:

• By having the entire team use the same version of the same toolchain, everyone should
get identical builds. This is quite helpful for debugging and testing.

• The pace of compiler development has increased with the recent updates to C++, and
newer versions offer significantly improved code generation in some cases.‡ During the
development of a previous project, we also ran into compiler bugs on older (4.8.x) versions
which caused our system to crash.

Building an entire cross-compiler toolchain is usually an arduous task, but we’ve had good success
using crosstool-NG. It helps you configure your toolchain using an interface similar to Linux’s
make nconfig, manages and downloads dependencies, and performs the builds for you. Recent
versions also allow you to provide arbitrary GCC sources, such as its latest release. The resulting
binaries can be statically linked, so deployment becomes as simple as tarballing the toolchain
and placing it somewhere accessible. Projects using the toolchain can then use a short script to
pull it down, extract it, and run it.

*Dynamic memory allocation is the simplest and most prevalent example. We usually want to avoid it—at least
after startup—on a real time embedded system, but exception handling and many other C++ features demand it.

†Clang also seems to provide solid tools for cross-compilation, but to date, it hasn’t been tried for our firmware.
‡For an example, see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69878.

1 / 6

mailto:matt@bitbashing.io
https://www.flukenetworks.com
http://crosstool-ng.org/
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69878

Linking C code

Embedded projects often have plenty of C dependencies, such as manufacturer-provided
drivers and the RTOS. Build them using gcc and wrap any of their headers you #include

with extern "C" { }. Similarly, any C++ functions that you want to call from a non-C++

environment—e.g., RTOS functions or startup assembly—must be tagged with extern "C".
This instructs the compiler not to mangle symbol names as it normally would.

Compiler flags

Exception handling and RTTI are difficult to provide without dynamic memory allocation
(much more on that below), so you likely want to disable them with -fno-exceptions,
-fno-non-call-exceptions, and -fno-rtti. And while it may reboot, firmware never exits in
the same sense as a userspace program does. Teardown code (including global destructors) can be
omitted with -fno-use-cxa-atexit. Other useful flags for embedded development include:

-ffreestanding, which indicates that your program exists in an environment where standard
library facilities may be absent and where your program may not begin at main().

-fstack-protector-strong, which is discussed later.

-fno-common, which ensures that each global variable is only declared once, in a single object.
This may improve performance on some targets.

-ffunction-sections and -fdata-sections, which split functions and data into their own
ELF sections. This allows the linker to eliminate additional unused code when passed
--gc-sections.

These aren’t specific to C++, but are worth mentioning here.

Enabling language features

As mentioned above, several useful C++ features require underlying system support. In a bare
metal or RTOS environment, we’ll need to provide it ourselves.

Disclaimer: Most of this is, of course, implementation-specific. Everything that follows is based
on our experiences using ARM Cortex-M4 boards with GCC 6. Hopefully this provides a useful
starting point, even if details change.

Global object initialization

Global objects can be quite useful for defining interfaces to hardware resources in an embedded
system, and these objects might have constructors. The C++ runtime normally guarantees that
all global (or file-local) objects are constructed before entering main(), but in an embedded
environment, we must call the constructors ourselves. GCC groups them into an array of
function pointers under the symbol name .init_array. After adding an entry to the linker
script resembling:

2 / 6

https://en.wikipedia.org/wiki/Name_mangling
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

. = ALIGN(4);

.init_array :

{

__init_array_start = .;

KEEP (*(.init_array*))

__init_array_end = .;

} > FLASH

we can call the functions like so:

static void callConstructors()

{

// Start and end points of the constructor list,

// defined by the linker script.

extern void (*__init_array_start)();

extern void (*__init_array_end)();

// Call each function in the list.

// We have to take the address of the symbols, as __init_array_start *is*

// the first function pointer, not the address of it.

for (void (**p)() = &__init_array_start; p < &__init_array_end; ++p) {

(*p)();

}

}

When to perform this step is another question. Should it be after hardware initialization? After
RTOS setup, but before your tasks begin executing? In the first RTOS task? Depending on
what you decide, it may be prudent to ensure these constructors don’t make OS calls or modify
hardware state—besides RAM, of course.

Inheritance

Judicious use of inheritance and run time polymorphism can be quite useful on embedded systems.
However, operator delete is required whenever we give a base class a virtual destructor—as is
standard practice—even if we never heap-allocate an object of that class.* The libgcc versions
assume a Unix-like userspace, so we should define our own. If we’re trying to avoid dynamic
memory allocation, a call to delete is probably a serious bug, and we should likely panic.

void operator delete(void* p)

{

DIE("delete called on pointer %p (was an object heap-allocated?)", p);

}

// Same as above, just a C++14 specialization.

// (See http://en.cppreference.com/w/cpp/memory/new/operator_delete)

void operator delete(void* p, size_t t)

{

DIE("delete called on pointer %p, size %zu", p, t);

}

*See http://stackoverflow.com/q/31686508 and
http://eli.thegreenplace.net/2015/c-deleting-destructors-and-virtual-operator-delete/ for details.
Kind readers have pointed out that we should avoid virtual destructors altogether if we don’t need polymorphic
deletion. Adding one increases the size of the class, since a vtable is needed.

3 / 6

http://stackoverflow.com/q/31686508
http://eli.thegreenplace.net/2015/c-deleting-destructors-and-virtual-operator-delete/

If objects with virtual destructors are stack-allocated, a version of the destructor without
operator delete is used.

Unrecommended language features

Scoped, static objects

Consider some function with a static variable:

void foo()

{

static Bar someObject;

// Do some work with someObject here.

}

If the object can be trivially initialized via placement in .data or .bss sections, there is no problem
here. The trouble arises if a constructor must be called at run time to initialize someObject.
C++11 guarantees that the construction of local static objects is race-free. That is, if multiple
threads call foo() at once, the compiler must provide some locking mechanism* to ensure that
the object’s initial value is decided by a single thread.

Since we might call functions in our system before the OS is running and can provide meaningful
locking, and since we generally want to do all initialization in an embedded system at startup
to make subsequent code as deterministic as possible, it’s instead recommended that any static
objects are placed at the file level. Alternatively, one can compile with -fno-threadsafe-statics

if they are positive that functions with static objects will not be called concurrently.

Exceptions

Modern exception-handling mechanisms are complex,† and most implementations—including
glibc’s—requires dynamic memory allocation and other facilities we don’t have. Third-party
solutions like libunwind also assume they sit atop some Unix-like userspace. Because of these
complexities, we haven’t attempted using exceptions for our embedded projects.

If you are interested in overcoming these hurdles, work Rian Quinn presented at CppCon 2016‡

seems to be a good starting point. In order to run C++ code in the Linux kernel, he built his own
stack unwinding library, which can be found at https://github.com/Bareflank/hypervisor/
tree/master/bfunwind.

Miscellaneous tools and notes

Stack overrun detection

Consider a function that allocates some storage on the stack:

*See http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/ for the usual approach.
†See https://mentorembedded.github.io/cxx-abi/abi-eh.html for the full spec used by GCC and Clang.
‡The presentation can be found at https://www.youtube.com/watch?v=uQSQy-7lveQ.

4 / 6

http://www.nongnu.org/libunwind/
https://github.com/Bareflank/hypervisor/tree/master/bfunwind
https://github.com/Bareflank/hypervisor/tree/master/bfunwind
http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/
https://mentorembedded.github.io/cxx-abi/abi-eh.html
https://www.youtube.com/watch?v=uQSQy-7lveQ

void bar()

{

char arrayOnStack[10];

// ...read and write to the local array...

}

If we walk off the end of the array, we can corrupt the memory following the current stack frame,
enter Undefined Behavior land, and can’t reason about the state of our program anymore. Fun is
not had. Fortunately, the compiler can provide a slight safety net at the cheap cost of one write
and one read per function. When given one of the flags below, GCC transforms the function
above into something resembling the following:

void bar()

{

// Assuming the stack grows down, out-of-bounds writes to arrayOnStack

// may clobber _canary.

uintptr_t _canary = __stack_chk_guard;

char arrayOnStack[10];

// ...read and write to the local array...

if (_canary != __stack_chk_guard) {

// We have done terrible things to our stack. Panic.

__stack_chk_fail();

}

}

Different flags offer control over how often the compiler adds these checks. To save you a trip to
the man pages,

-fstack-protector emits guards for “functions that call alloca, and functions with [character]
buffers larger than 8 bytes.”

-fstack-protector-strong emits guards for “[functions] that have local array definitions, or
have references to local frame addresses.” This is the generally recommended setting.

-fstack-protector-all emits guards for every function. This is probably overkill and too
expensive for an embedded system.

-fstack-protector-explicit emits guards for functions marked by a stack_protect attribute.
This is probably too tedious to use effectively.

To use these guards, we must provide both of the symbols shown in the example above. One is
the canary, and the other is a function to call when stack corruption is detected. Panicking or
rebooting is probably the only sane recourse here.

extern "C" {

// The canary value

extern const uintptr_t __stack_chk_guard = 0xdeadbeef;

// Called if the check fails

[[noreturn]]

void __stack_chk_fail()

{

DIE("Stack overrun!");

}

5 / 6

} // end extern "C"

The compiler handles the rest. It’s worth noting that if we are particularly unlucky and manage
to read or write past the current stack frame without modifying the canary, this system won’t
notice the corruption. Life is hard sometimes.

On inlining and optimization

In embedded systems, we’re often under pressure to keep our code as small as possible. Inlining
may seem antithetical to that goal, but this isn’t always the case. Placing trivial code in headers
as inline functions allows modern C++ compilers to generate incredibly small and efficient
output. See Jason Turner’s Rich Code for Tiny Computers talk from CppCon 2016* for an extreme
example.

If you’re building firmware with -Os (i.e., optimize for size), consider adding

-finline-small-functions, which inlines functions whenever the compiler thinks the function
body is smaller than the size of the call sites.

-findirect-inlining, which runs additional inlining passes. For example, if main() calls a()
and a() calls b(), this compiler could fold the body of a() into main(), then notice that
b() is also a good candidate for inlining and fold it in. Serious improvements can be
gained through such second-order effects.

Current projects are built using -O2, which provides “nearly all supported optimizations that
do not involve a space-speed tradeoff.” As always, test, test, and test some more! ARM and
other RISC architectures produce particularly readable disassembly—examine it to see what
the compiler generates when given different options. For quick experiments, try the Godbolt
compiler explorer, which colors the disassembly to show which lines of code generated it.

Good luck and godspeed!

*See https://www.youtube.com/watch?v=zBkNBP00wJE

6 / 6

https://godbolt.org/
https://godbolt.org/
https://www.youtube.com/watch?v=zBkNBP00wJE

	Setup
	Building a toolchain
	Linking C code
	Compiler flags

	Enabling language features
	Global object initialization
	Inheritance

	Unrecommended language features
	Scoped, static objects
	Exceptions

	Miscellaneous tools and notes
	Stack overrun detection
	On inlining and optimization

