
Comparing Floating-Point Numbers Is Tricky

Matt Kline
matt@bitbashing.io

March 30, 2017

Abstract

Floating-point math is fraught with subtle gotchas, and
comparing values properly is no exception. Here we dis-
cuss common pitfalls, examine some possible solutions,
and try to beat Boost.

Things you probably know about floats

If you need to represent a non-integer in a mainstream
programming language, you’ll probably end up using
IEEE 754 floating-point values. Since their standard-
ization in 1985, they’ve become ubiquitous. Nearly all
modern CPUs—and many microprocessors—contain
special hardware (called floating-point units, or FPUs) to
handle them.

exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

The layout of a 64-bit IEEE 754 float
(from Wikipedia)

Each float consists of a sign bit, some bits representing
an exponent, and bits representing a fraction, also called
the mantissa. Under most circumstances, the value of a
float is:

(–1)s × 1.m× 2e–c

where s is our sign bit, m is some fraction represented by
the mantissa bits, e is an unsigned integer represented
by the exponent bits, and c is half the maximum value
of e, i.e., 127 for a 32-bit float and 1023 for a 64-bit
float.

There are also some special cases. For example, when all
exponent bits are zero, the formula changes to:

(–1)s × 0.m× 2–c+1

Note the lack of an implicit 1 preceding the mantissa—
this allows us to store small values close to zero, called
denormal or subnormal values. And when all exponent
bits are one, certain mantissa values represent +∞, –∞,
and “Not a Number” (NaN), the result of undefined or
unrepresentable operations such as dividing by zero.

We’ll make two observations that will prove themselves
useful shortly:

1. Floats cannot store arbitrary real numbers, or even
arbitrary rational numbers. They can only store
numbers representable by the equations shown
before. For example, if I declare some variable,

float f = 0.1f;

f becomes 0.100000001490116119384765625,
the closest 32-bit float value to 0.1.

2. Since the equations are exponential, the distance
on the number line between adjacent values in-
creases (exponentially!) as you move away from
zero. The distance between 1.0 and the next possi-
ble value is about 1.19× 10–7, but the distance be-
tween adjacent floats near 6.022×1023 is roughly
3.6 × 1016. This will prove to be our greatest
challenge: when comparing floats, we want to
handle inputs close to zero as well as we handle
ones close to the Avogadro constant.

What is equality?

Since the result of every floating-point operation must
be rounded to the nearest possible value, math doesn’t be-
have like it does with real numbers. Depending on your
hardware, compiler, and compiler flags, 0.1 × 10 may
produce a different result than

∑10
n=1 0.1.* Whenever we

compare calculated values to each other, we should pro-
vide some leeway to account for this. Comparing their
exact values with == won’t cut it.

*On my setup, the former gives 1.0 and the latter gives 1.000000119209290.

1 / 8

mailto:matt@bitbashing.io
https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Instead, we should consider two distinct values a and
b equal if |a – b| ≤ ε for some sufficiently small ε. As
luck would have it, the C standard library contains a
FLT_EPSILON. Let’s try it out!

bool almostEqual(float a, float b)

{

return fabs(a - b) <= FLT_EPSILON;

}

We would hope that we’re done here, but we would
be wrong. A look at the language standards reveals
that FLT_EPSILON is equal to the difference between
1.0 and the value that follows it. But as we noted
before, float values aren’t equidistant! For values less
than 1, FLT_EPSILON quickly becomes too large to
be useful. For values greater than 2, FLT_EPSILON is
smaller than the distance between adjacent values, so
fabs(a - b) <= FLT_EPSILON will always be false.

To address these problems, what if we scaled ε propor-
tionally to our inputs?

bool relativelyEqual(float a, float b,

float maxRelativeDiff = FLT_EPSILON)

{

const float difference = fabs(a - b);

// Scale to the largest value.

a = fabs(a);

b = fabs(b);

const float scaledEpsilon =

maxRelativeDiff * max(a, b);

return difference <= scaledEpsilon;

}

This works better than our initial solution, but it’s not
immediately obvious what values of maxRelativeDiff
we might want for different cases. The fact that we scale
it by arbitrary inputs also means it can fall prey to the
same rounding we’re worried about in the first place.

What about Boost?

Boost, the popular collection of C++ libraries, provides
functions for similar purposes.* After removing template
boilerplate and edge case handling for ±∞ and NaNs,
they resemble:

float relative_difference(float a, float b)

{

return fabs((a - b) / min(a, b));

}

float epsilon_difference(float a, float b)

{

return relative_difference(a, b) /

FLT_EPSILON;

}

Unfortunately, these functions don’t seem to solve our
problems.† Since the division in relative_difference

often makes its result quite small,‡ how do we know
what a good threshold might be? By dividing that result
by FLT_EPSILON, epsilon_difference attempts to give
an easier value to reason about. But we just saw the dan-
gers of FLT_EPSILON ! This scheme becomes increasingly
questionable as inputs move away from one.

What about ULPs?

It would be nice to define comparisons in terms of some-
thing more concrete than arbitrary thresholds. Ideally,
we would like to know the number of possible floating-
point values—sometimes called units of least precision,
or ULPs—between inputs. If I have some value a, and
another value b is only two or three ULPs away, we can
probably consider them equal, assuming some rounding
error. Most importantly, this is true regardless of the
distance between a and b on the number line.

Boost offers a function called float_distance to get the
distance between values in ULPs, but it’s about an order
of magnitude slower than the approaches discussed so
far. With some bit-fiddling, we can do better.

Consider some positive float x where every mantissa bit
is one. x + 1ulp must use the next largest exponent, and
all its mantissa bits must be zero. As an example, con-
sider 1.99999988 and 2:

*See Floating-point Comparison in the floating-point utilities section of Boost’s Math toolkit.
†Boost libraries are usually high-quality and thoroughly reviewed, so please contact me if I’ve missed some critical observation.
‡For example, the relative_difference between 42 and the next float value is about 9.08× 10–8.

2 / 8

http://www.boost.org/doc/libs/1_63_0/libs/math/doc/html/math_toolkit/float_comparison.html

Value Bits Exponent Mantissa bits
1.99999988 0x3FFFFFFF 127 0x7FFFFF

2.0 0x40000000 128 0x000000

The property holds for denormals, even though they
have a different value equation. Consider the largest
denormal value and the smallest normal one:

Value Bits Exp. Man. bits
1.1754942× 10–38 0x007FFFFF –126 0x7FFFFF

1.17549435× 10–38 0x00800000 –126 0x000000

Notice an interesting corollary: adjacent floats (of the
same sign) have adjacent integer values when reinter-
preted as such. This reinterpretation is sometimes called
type punning, and we can use it to calculate the distance
between values in ULPs.

Traditionally in C and C++, one used a union trick:

union FloatPun {

float f;

int32_t i;

};

FloatPun fp;

fp.f = 25.624f;

// Read the same value as an integer.

printf("%x", fp.i);

This still works in C, but can run afoul of strict alias-
ing rules in C++.* A better approach is to use memcpy.
Given the usual use of the function, one might assume
that it would be less efficient, but

int32_t floatToInt(float f)

{

int32_t r;

memcpy(&r, &f, sizeof(float));

return r;

}

compiles to a single instruction that moves the value
from a floating-point register to an integer one. This is
exactly what we want.

With that problem solved, calculating the ULPs between
values becomes quite straightforward:

int32_t ulpsDistance(const float a, const float b)

{

// Save work if the floats are equal.

// Also handles +0 == -0.

if (a == b) return 0;

const auto max =

std::numeric_limits<int32_t>::max();

// Max distance for NaN

if (isnan(a) || isnan(b)) return max;

// If one's infinite and they're not equal,

// max distance.

if (isinf(a) || isinf(b)) return max;

int32_t ia, ib;

memcpy(&ia, &a, sizeof(float));

memcpy(&ib, &b, sizeof(float));

// Don't compare differently-signed floats.

if ((ia < 0) != (ib < 0)) return max;

// Return the absolute value of

// the distance in ULPs.

int32_t distance = ia - ib;

if (distance < 0) distance = -distance;

return distance;

}

This code is quite portable—it only assumes that the
platform supports 32-bit integers and that floats are
stored in accordance with IEEE 754.† We avoid com-
paring differently-signed values for a few reasons:

1. ULPs are the wrong tool to compare values near
or across zero, as we’ll see below.

2. Almost all modern CPUs use two’s complement
arithmetic, while floats use signed magnitude.
Converting one format to the other in order to
meaningfully add or subtract differently-signed
values requires some extra work. For the same
reason, the sign of our result might not be what
we expect, so we take its absolute value. We only
care about the distance between our two inputs.

3. If the subtraction overflows or underflows, we
get undefined behavior with signed integers and
modular arithmetic with unsigned ones. Neither
is desirable here.

*See http://stackoverflow.com/q/11639947 and http://stackoverflow.com/q/17789928.
†The format of float is implementation-defined according to the C++ standard, and not necessarily adherent to IEEE 754. (See
http://stackoverflow.com/a/24157568.) Perhaps this is why Boost’s float_distance is implemented the way it is.

3 / 8

https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation
http://stackoverflow.com/q/11639947
http://stackoverflow.com/q/17789928
http://stackoverflow.com/a/24157568

We calculate the absolute value ourselves instead of us-
ing std::abs for two reaons. First, the integer versions
of std::abs only take types—such as int, long, and
long long—whose sizes are platform-specific. We want
to avoid assumptions about implicit conversions be-
tween those types and int32_t.* The second is a strange
pitfall related to the placement of std::abs overloads in
the C++ standard library. If you include <cmath> but not
<cstdlib>, only the floating-point versions of std::abs
are provided. Several toolchains I tested then promote
the int32_t value to a double, even if your target only
has a 32-bit FPU and must emulate double using in-
teger registers. (As one might guess, this is terrible for
performance.) Warning flags such as -Wconversion can
help us notice this happening, or we can just avoid all
these gotchas by calculating the absolute value directly.
At any rate, this is a trivial detail.

No silver bullets

Relative epsilons—including ULPs-based ones—don’t
make sense around zero. The exponential nature of floats
means that many more values are gathered there than
anywhere else on the number line. Despite being a fairly
small value in the context of many calculations, 0.1 is
over one billion ULPs away from zero! Consequently,
fixed epsilons are probably the best choice when you ex-
pect the results to be small. What particular ε you want
is entirely dependent on the calculations performed.

Armed with this knowledge, you may be tempted to
write some end-all comparison function along the lines
of:

bool nearlyEqual(float a, float b,

float fixedEpsilon, int ulpsEpsilon)

{

// Handle the near-zero case.

const float difference = fabs(a - b);

if (difference <= fixedEpsilon) return true;

return ulpsDistance(a, b) <= ulpsEpsilon;

}

But using it meaningfully is difficult without under-
standing the theory we’ve discussed.

Brief aside: Other ULPs-based functions

We can use the same techniques to write other useful
functions, such as one that increments a float by some
number of ULPs. Boost offers a similar family of func-
tions (float_next, float_advance, etc.), but like its
float_distance, they pay a performance cost to avoid
type punning.

One would hope we could simply get our ULPs, per-
form our addition, and pun the result back, e.g.,

/// Increases f by the given number of ulps

float ulpsIncrement(float f, int32_t ulps)

{

if (isnan(f) || isinf(f)) return f;

int32_t i;

memcpy(&i, &f, sizeof(float));

i += ulps;

memcpy(&f, &i, sizeof(float));

return f;

}

This naïve solution works for positive values, but on
most hardware, “incrementing” a negative float by a
positive number of ULPs will move us away from zero!
This is probably not what we want. We mentioned be-
fore that floats use a signed magnitude scheme, whereas
most CPUs use two’s complement. So, to operate on
negative values, we need to convert from the former to
the CPU’s native integer format.†

static const int32_t int32SignBit =

(int32_t)1 << 31;

int32_t floatToNativeSignedUlps(float f)

{

int32_t i;

memcpy(&i, &f, sizeof(float));

// Positive values are the same in both

// two's complement and signed magnitude.

// For negative values, remove the sign bit

// and negate the result (subtract from 0).

return i >= 0 ? i : -(i & ~int32SignBit);

}

After operating on the ULPs, we must convert back to
signed magnitude:

*Granted, this is borderline paranoia—int32_t is one of those types on nearly every relevant platform.
†On esoteric hardware, the native format may also be signed magnitude. In those cases, we trust the compiler to elide the needless work
we do here.

4 / 8

float nativeSignedUlpsToFloat(int32_t ulps)

{

if (ulps < 0) {

ulps = -ulps;

ulps |= int32SignBit;

}

float f;

memcpy(&f, &ulps, sizeof(float));

return f;

}

With those functions defined, we can return to our
goal:

float ulpsIncrement(float f, int32_t ulps)

{

if (isnan(f) || isinf(f)) return f;

int32_t i = floatToNativeSignedUlps(f);

i += ulps;

return nativeSignedUlpsToFloat(i);

}

Takeaways

When comparing floating-point values, remember:

• FLT_EPSILON… isn’t float epsilon, except in the
ranges [–2, –1] and [1, 2]. The distance between
adjacent values depends on the values in question.

• When comparing to some known value—
especially zero or values near it—use a fixed ε
that makes sense for your calculations.

• When comparing non-zero values, some ULPs-
based comparison is probably the best choice.

• When values could be anywhere on the number
line, some hybrid of the two is needed. Choose
epsilons carefully based on expected outputs.

Acknowledgments

Much of this was adapted from Bruce Dawson’s fantastic
exploration of the topic on his blog, Random ASCII.
Thanks also to coworkers Evan Thompson and Matt
Drees for their input.

5 / 8

https://randomascii.wordpress.com

Appendix: Performance concerns

The relatively poor performance of boost::float_distance was a large motivation for implementing our own
ulpsDistance. For the sake of completeness, the following is a benchmark (using Google’s benchmark library)
comparing the two with a handful of inputs.

#include <cstring> // For memcpy

#include <limits> // for numeric_limits<float>::infinity

#include <random>

#include <benchmark/benchmark.h>

#include <boost/math/special_functions/next.hpp>

#include <boost/math/special_functions/relative_difference.hpp>

using namespace std;

using namespace boost::math;

std::pair<float, float> pickInput()

{

static auto re = mt19937(random_device()());

static auto coinFlip = bernoulli_distribution(0.5);

static auto inputPicker = uniform_int_distribution<int>(1, 10);

const float infinity = numeric_limits<float>::infinity();

switch(inputPicker(re)) {

// Let's say there's a 5% chance our values are denormal.

// (This is probably more pessimal than our actual data.)

case 1:

if (coinFlip(re)) return {1e-38f, float_advance(1e-38f, 3)};

// Intentional fall-through

// Let's throw in some huge numbers

case 2:

case 3:

case 4:

case 5:

return {6.022e23f, 2.998e8f};

break;

// And so not-so-huge ones.

case 6:

case 7:

case 8:

case 9:

return {1.0f, 11.0f};

// Let's say there's a 5% chance we have NaNs

// and another 5% chance they're infinity

case 10:

if (coinFlip(re)) return {42, numeric_limits<float>::quiet_NaN()};

else return {42, infinity};

default: assert(0);

}

}

6 / 8

https://github.com/google/benchmark

__attribute__((noinline)) // For visibility when benchmarking

int32_t ulpsDistance(const float a, const float b)

{

// We can skip all the following work if they're equal.

if (a == b) return 0;

const auto max = numeric_limits<int32_t>::max();

// We first check if the values are NaN.

// If this is the case, they're inherently unequal;

// return the maximum distance between the two.

if (isnan(a) || isnan(b)) return max;

// If one's infinite, and they're not equal,

// return the max distance between the two.

if (isinf(a) || isinf(b)) return max;

// At this point we know that the floating-point values aren't equal and

// aren't special values (infinity/NaN).

// Because of how IEEE754 floats are laid out

// (sign bit, then exponent, then mantissa), we can examine the bits

// as if they were integers to get the distance between them in units

// of least precision (ULPs).

static_assert(sizeof(float) == sizeof(int32_t), "What size is float?");

// memcpy to get around the strict aliasing rule.

// The compiler knows what we're doing and will just transfer the float

// values into integer registers.

int32_t ia, ib;

memcpy(&ia, &a, sizeof(float));

memcpy(&ib, &b, sizeof(float));

// If the signs of the two values aren't the same,

// return the maximum distance between the two.

// This is done to avoid integer overflow, and because the bit layout of

// floats is closer to sign-magnitude than it is to two's complement.

// This *also* means that if you're checking if a value is close to zero,

// you should probably just use a fixed epsilon instead of this function.

if ((ia < 0) != (ib < 0)) return max;

// If we've satisfied all our caveats above, just subtract the values.

// The result is the distance between the values in ULPs.

int32_t distance = ia - ib;

if (distance < 0) distance = -distance;

return distance;

}

void benchFloatDistance(benchmark::State& state)

{

while (state.KeepRunning()) {

state.PauseTiming();

float a, b;

std::tie(a, b) = pickInput();

state.ResumeTiming();

// float_distance can't handle NaN and Infs.

if (!isnan(a) && !isnan(b) && !isinf(a) && !isinf(b)) {

benchmark::DoNotOptimize(float_distance(a, b));

}

7 / 8

}

}

BENCHMARK(benchFloatDistance);

void benchUlps(benchmark::State& state)

{

while (state.KeepRunning()) {

state.PauseTiming();

float a, b;

std::tie(a, b) = pickInput();

state.ResumeTiming();

benchmark::DoNotOptimize(ulpsDistance(a, b));

}

}

BENCHMARK(benchUlps);

BENCHMARK_MAIN();

On my laptop (an Intel Core i7 Skylake), I get:

Benchmark Time CPU Iterations

benchFloatDistance 717 ns 836 ns 850424

benchUlps 157 ns 176 ns 3914780

And on an ARMv6 board we use at work for embedded Linux platforms, I get:

Benchmark Time CPU Iterations

benchFloatDistance 43674 ns 42609 ns 16646

benchUlps 4748 ns 4602 ns 151382

Actual timing values obviously depend on the type of inputs, the uniformity of the inputs (which influences
branch prediction), and many other factors, but our function seems to outperform Boost alternatives in the general
case.

8 / 8

	Abstract
	Things you probably know about floats
	What is equality?
	What about Boost?
	What about ULPs?
	No silver bullets
	Brief aside: Other ULPs-based functions
	Takeaways
	Acknowledgments
	Appendix: Performance concerns

